SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

Generalized (σ,τ) higher derivations in prime rings

Mohammad Ashraf* and Almas Khan

Author Affiliations

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

For all author emails, please log on.

SpringerPlus 2012, 1:31  doi:10.1186/2193-1801-1-31

The electronic version of this article is the complete one and can be found online at: http://www.springerplus.com/content/1/1/31


Received:16 August 2012
Accepted:20 September 2012
Published:6 October 2012

© 2012 Ashraf and Khan; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let R be a ring and U be a Lie ideal of R. Suppose that σ, τ are endomorphisms of R. A family D = {dn}nNof additive mappings dn:RR is said to be a (σ,τ)- higher derivation of U into R if d0 = IR, the identity map on R and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M1">View MathML</a> holds for all a, bU and for each nN. A family F = {fn}nNof additive mappings fn:RR is said to be a generalized (σ,τ)- higher derivation (resp. generalized Jordan (σ,τ)-higher derivation) of U into R if there exists a (σ,τ)- higher derivation D = {dn}nNof U into R such that, f0 = IR and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M2">View MathML</a> (resp. <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M3">View MathML</a> holds for all a, bU and for each nN. It can be easily observed that every generalized (σ,τ)-higher derivation of U into R is a generalized Jordan (σ,τ)-higher derivation of U into R but not conversely. In the present paper we shall obtain the conditions under which every generalized Jordan (σ,τ)- higher derivation of U into R is a generalized (σ,τ)-higher derivation of U into R.

Keywords:
Derivation; Higher derivation; Jordan - higher derivation; Lie ideal

Introduction

Throughout (σ,τ) the present paper R will denote an associative ring with center Z(R). For any x,yR denote the commutator xyyx by [x,y]. Recall that a ring R is prime if aRb = {0} implies that a = 0 or b = 0. An additive subgroup U of R is said to be a Lie ideal of R if [U,R] ⊆ U. A Lie ideal U of R is said to be a square closed Lie ideal of R if u2U for all uU. An additive mapping d:RR is said to be a derivation (resp. Jordan derivation) of R if d(xy) = d(x)y + xd(y)(resp. d(x2) = d(x)x + xd(x)) holds for all x,yR. Now let D = {dn}nN be a family of additive mappings dn:R. Following Hasse and Schimdt (→ R1937), D is said to be a higher derivation (resp. Jordan higher derivation) on R if d0 = IR(the identity map on R) and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M4">View MathML</a> (resp. <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M5">View MathML</a> holds for all a, bR and for each nN. Several interesting results on higher derivation can be seen in Haetinger (2000). Let σ,τ be endomorphisms of R. An additive mapping d:RR is said to be a (σ,τ)-derivation (resp. Jordan (σ,τ)-derivation) of R if d(xy) = σ(x)d(y) + d(x)τ(y) (resp. d(x2) = σ(x)d(x) + d(x)τ(x)) holds for all x,yR. For a fixed aR, the map da:RRgiven by da(x) = (x) − σ(x)a for all xR is a (σ,τ)- derivation which is said to be a (σ,τ)-inner derivation determined by a.

Inspired by the notion of (σ,τ)- derivation the authors together with Haetinger (2010) introduced the concept of a (σ,τ)- higher derivation as follows: A family D = {dn}nN of additive mappings dn:RR is said to be a (σ,τ)- higher derivation of R if d0 = IR and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M6">View MathML</a> holds for all a, bR and for each nN (If U is a Lie ideal of R, then D is said to be a (σ,τ)- higher derivation of U into R if the corresponding conditions are satisfied for all a, bU).

Following Bres̆ar (1991), an additive mapping F:RRis said to be a generalized derivation if there exists a derivation d:RR such that F(xy) = F(x)y + xd(y) holds for all x, yR. Motivated by the definition of generalized derivation the notion of generalized higher derivation was introduced by Cortes and Haetinger (2005). A family F = {fn}nNof additive maps fn:RRis said to be a generalized higher derivation of R if there exists a higher derivation D = {dn}nN of R such that f0 = IR and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M7">View MathML</a> for all a, bR and for each nN.

An additive mapping F:RR is said to be a generalized (σ,τ)-inner derivation if F(x) = σ(x)b + (x) holds for some fixed a, bR and for all xR. If F is a generalized (σ,τ)-inner derivation, a simple computation yields that F(xy) = σ(x)db(y) + F(x)τ(y), where db is a (σ,τ)-inner derivation. With this point of view an additive mapping F:RR is said to be a generalized (σ,τ)-derivation on R if there exists a (σ,τ)-derivation d:RR such that F(xy) = σ(x)d(y) + F(x)τ(y) holds for all x,yR. For such an example let S be any ring and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M8">View MathML</a>. Define an additive map F:RR such that <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M9">View MathML</a> and endomorphisms σ,τ:RR such that <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M10">View MathML</a> and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M11">View MathML</a>. Then it can be easily seen that F is a generalized (σ,τ)-derivation on R with associated (σ,τ)- derivation d:RR such that <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M12">View MathML</a>.

In view of the above definition we introduce the analogue of (σ,τ)-higher derivation in a more general setting.

Let σ,τ be endomorphims of R. A family F = {fn}nN of additive maps fn:RR is said to be generalized (σ,τ)-higher derivation (resp. generalized Jordan (σ,τ)-higher derivation) of R if there exists a (σ,τ)-higher derivation D = {dn}nN of R such that f0 = IR and <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M13">View MathML</a> (resp. <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M14">View MathML</a> holds for all a, bR and for each nN.

Let U be a Lie ideal of R. Then F is said to be a generalized (σ,τ)-higher derivation (resp. generalized Jordan (σ,τ)-higher derivation) of U into R if the above corresponding conditions are satisfied for all a, bU.

Example 1.1. Let R be an algebra over the field of rationals and σ,τ be the endomorphisms of R. Define <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M15">View MathML</a>, for all nN, where f is a generalized (σ,τ)- derivation on R with associated (σ,τ)-derivation δsuch that = σf and δτ = τδ(the above example of generalized (σ,τ)-derivation ensures the existence of such f). Consider the sequence {Fn}nN, this defines a generalized (σ,τ)- higher derivation with associated (σ,τ)-higher derivation <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M16">View MathML</a>.

If we choose the underlying f to be a generalized Jordan (σ,τ)−derivation on R which is not a generalized (σ,τ)−derivation on R then one can easily construct an example of a generalized Jordan (σ,τ)− higher derivation on R which is not a generalized (σ,τ)− higher derivation on R.

It is easy to see that every derivation on R is a Jordan derivation but the converse need not be true in general. A well-known result due to Herstein (2002) states that every Jordan derivation on a prime ring of characteristic different from two is a derivation. This result was further generalized by many authors in various directions (see Ashraf et al. 2001; Bres̆ar and Vukman 1991where further references can be found). Motivated by these results Ferrero and Haetinger (2002) generalized Herstein’s theorem for higher derivations and proved that every Jordan higher derivation on a prime ring of characteristic different from two is a higher derivation. The authors together with Haetinger (Ashraf et al. 2010) further generalized the above result in the setting of (σ,τ)-higher derivation of R. The main objective of the present paper is to find the conditions on R under which every generalized Jordan (σ,τ)-higher derivation of R is a generalized (σ,τ)-higher derivation of R. In fact our results generalize, extend and compliment several results obtained earlier in this direction.

Main results

Recently, Haetinger (2002) proved that if R is a prime ring of characteristic different from 2 and U a square closed Lie ideal such that U⫅̸Z(R). Then every Jordan higher derivation of U into R is a higher derivation of U into R. The following theorem shows that the above result still holds for arbitrary square closed Lie ideal of R that is, U may be central.

Theorem 2.1. Let R be a prime ring such that char(R) ≠ 2 and U be a square closed Lie ideal of R. Suppose that σ,τ are endomorphisms of R such that στ = τσ and τ is one-one & onto. Then every generalized Jordan (σ,τ)-higher derivation of U into R is a generalized (σ,τ)-higher derivation of U into R.

In order to develop the proof of the theorem, we begin with the following known lemma:

Lemma 2.1. ((Ferrero and Haetinger 2002), Lemma 2.3) Assume that R is a 2-torsion free prime ring and U a square closed Lie ideal of R such that U⫅̸Z(R). Let G1,G2,⋯,Gnbe additive groups, S:G1×G2×⋯×GnR and T:G1×G2×⋯×GnR be the mappings which are additive in each argument. If S(a1,a2,⋯,an)xT(a1,a2,⋯,an) = 0 for every xU, aiGi, i = 1,2,⋯,n then S(a1,a2,⋯,an) = 0 for every aiGi, i = 1,2,⋯,nor T(b1,b2,⋯,bn) = 0 for every biGi, i = 1,2,⋯,n.

Lemma 2.2. Let R be a ring and σ, τ be endomorphisms of R such that στ = τσ and F = {fn}nNbe a generalized Jordan (σ,τ)-higher derivation of U into R with associated (σ,τ)-higher derivation D = {dn}nN of U into R. Then for all u, v, wU and each fixed nN we have for all u, v, wU.

(i) <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M17">View MathML</a>

If R is a 2-torsion free ring then,

(ii) <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M18">View MathML</a>

(iii) <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M19">View MathML</a>

Proof. (i) For u, vU, nN we have, <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M20">View MathML</a>.By linearizing the above relation on u we obtain

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M21">View MathML</a>

for all u, vU. Again;

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M22">View MathML</a>

for all u, vU.Comparing the above expressions and reordering the indices we obtain the required result.

(ii) Since uv + vu = (u + v)2u2v2U, using (i) and replacing v by uv + vu we find that,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M23">View MathML</a>

(2.1)

On the other hand,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M24">View MathML</a>

(2.2)

Comparing the equations (2.1) and (2.2) and reordering the indices and using the fact that R is 2-torsion free we get the required result.

(iii) Linearizing the above result, we have

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M25">View MathML</a>

(2.3)

Again,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M26">View MathML</a>

(2.4)

Comparing (2.3) & (2.4) and using the fact that R is 2-torsion free we get the required result.

For every fixed nN and for each u,vU we denote by Φn(u,v) the element of R such that <a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M27">View MathML</a>. It is straight forward to see that if Φn(u,v) = 0, then F = {fn}nN is a generalized (σ,τ)-higher derivation of U into R. Trivially, by using Lemma 2.2(i) we get Φn(u,v) = −Φn(v,u), for all u,vU.

It can also be seen that the function Φnis additive in both the arguments.

Lemma 2.3. Let R be a 2-torsion free ring and σ,τbe endomorphisms of R such that στ = τσ. Let F = {fn}nNbe a generalized Jordan (σ,τ)-higher derivation of U into R with associated (σ,τ)-higher derivation D = {dn}nNof U into R. If Φm(u,v) = 0, for each m<n and for all u,vU, then

(i) Φn(u,v)τn[u,v] = 0, for all u,vU

(ii) Φn(u,v)τn(w)τn[u,v] = 0, for all u,v,wU.

Proof.

(i) Since for any u,vU, uv + vuU and uvvuU, we find that 2uvU. Suppose β = 4(uv(uv) + (uv)vu)∈U. Using Lemma 2.2(iii) we have,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M28">View MathML</a>

Using the fact that Φm(u,v) = 0 for all m<n we have,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M29">View MathML</a>

(2.5)

On the other hand,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M30">View MathML</a>

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M31">View MathML</a>

(2.6)

Comparing (2.5) with (2.6) for fn(β)we get Φn(u,v) × [τn(u),τn(v)] = 0 for all u, vU.

(ii) Let χ = 4(uvwvu + vuwuv) for u, v, wU. Then by Lemma 2.2(ii) we obtain

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M32">View MathML</a>

(2.7)

Again consider,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M33">View MathML</a>

Applying Lemma 2.2(iii), we have

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M34">View MathML</a>

(2.8)

Equating (2.7) & (2.8) and using the fact that R is 2 torsion free we find that

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M35">View MathML</a>

(2.9)

Initially calculating the first term we have

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M36">View MathML</a>

Using the hypothesis that Φm(u,v) = 0 for all m < n.

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M37">View MathML</a>

(2.10)

Similarly the second term reduces to

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M38">View MathML</a>

(2.11)

Now, subtracting the equation (2.11) from (2.10) and using the hypothesis that στ = τσ we obtain

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M39">View MathML</a>

Similarly, the difference of the last two terms of equation (2.9) yields

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M40">View MathML</a>

Thus, (2.9) becomes Φn(u,v)τn(w)τn[u,v] = 0 for all u, vU.

We are now well equipped to prove our main theorem.

Proof of Theorem 2.1. Suppose that U is commutative. If U is commutative then U is also central (see the proof of Lemma 1.3 of (Herstein 1969)). We’ll proceed by induction on n. For n = 1, every generalized Jordan (σ,τ)-higher derivation reduces to generalized Jordan (σ,τ)-derivation and hence using Lemma 2.2(iii) of (Ashraf et al. 2001), we have

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M41">View MathML</a>

(2.12)

As U is commutative, in view of Lemma 2.2(i) of (Ashraf et al. 2001) we have

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M42">View MathML</a>

Since, d(uv) = d(vu) = σ(v)d(u) + d(v)τ(u), the above equation can be rewritten as

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M43">View MathML</a>

(2.13)

Comparing the equations (2.12) and (2.13) we obtain

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M44">View MathML</a>

As w is central and since τ is one-one and onto hence τ(w) is central but the center of a prime ring is free from zero divisors, the above equation implies that Φ1(u,v) = 0 for all u, vU. Let Φm(u,v) = 0 for all u, vU and each m < n then from Lemma 2.2(iii), we have

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M45">View MathML</a>

(2.14)

for all u, v, wU.

Again by using Lemma 2.2(i) and commutativity of U, we get

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M46">View MathML</a>

Since U is commutative we find that dj(τnj(uv)) = dj(τnj(vu)) and as dj is a (σ,τ)-higher derivation the above equation can be written as

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M47">View MathML</a>

(2.15)

Comparing equations (2.15) and (2.14) we find that

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M48">View MathML</a>

Since Φm(u,v) = 0 for all u, vU, m < n, the above equation reduces to

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M49">View MathML</a>

(2.16)

Since w is central and as τ is one-one and onto, τn(w) is also central. But the center of a prime ring is free from the zero divisors, equation (2.16) implies that Φn(u,v) = 0 for all u, vU and each nN.

Now consider the possibility that U is non-commutative hence U⫅̸Z(R). Using Lemma 2.3(ii) we have Φn(u,v)τn(w)τn[u,v] = 0 for all u,v,wU. Since τ is one-one and onto, the relation yields that τn(Φn(u,v))w[u,v] = 0 for all u,v,wU. Hence by Lemma 2.1, τn(Φn(u,v)) = 0 for all u,vU or [u,v] = 0 for all u,vU. But since U is non-commutative, we find that Φn(u,v) = 0, for all u,vU and each nN.This completes the proof of our theorem.

As a consequence of the above result we find the following corollaries. Corollary 2.1 settle the conjecture given in (Ashraf et al. 2004) for a square closed Lie ideal while Corollary 2.2 improves the main Theorems of (Ashraf et al. (2010), Bres̆ar and Vukman (1988); Haetinger (2002)). □

Corollary 2.1. Let R be 2 torsion free prime ring and U a square closed Lie ideal of R. Suppose that θ,ϕ are endomorphisms of R such that ϕ is one-one, onto. If F:RR is a generalized Jordan (θ,ϕ) derivation on U then F is a generalized (θ,ϕ) derivation on U.

Corollary 2.2. Let R be a prime ring such that char(R) ≠ 2 and U a square closed Lie ideal of R. Then every Jordan higher derivation of U into R is a higher derivation of U into R.

In the above theorem if the underlying ring is arbitrary, then we can prove the following:

Theorem 2.2. Let R be a 2- torsion free ring and U be a square closed Lie ideal of R. Suppose that σ,τ are endomorphisms of R such that στ = τσ and τ is one-one & onto. If U has a commutator which is not a right zero divisor, then every generalized Jordan (σ,τ)-higher derivation of U into R is a generalized (σ,τ)-higher derivation of U into R.

Proof. Let x,yU be the fixed elements such that c[x,y]=0⇒c = 0 for every cR. We’ll prove the result by induction on n.

We know that for n = 0, Φ0(u,v) = 0. Hence proceeding by induction we can assume that Φm(u,v) = 0 for all m<n. Using Lemma 2.3(i) we have

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M50">View MathML</a>

(2.17)

The above equation implies that τn(Φn(u,v))[u,v] = 0 for all u, vU. Hence in particular, τn(Φn(x,y))[x,y] = 0. This implies that,

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M51">View MathML</a>

(2.18)

Replacing u by u + x in (2.17) we get

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M52">View MathML</a>

(2.19)

Again replacing v by y in (2.19) and using (2.18) we get Φn(u,y)[τn(x),τn(y)] = 0, for every uU,i.e., τn(Φn(u,y))[x,y] = 0. This yields that

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M53">View MathML</a>

(2.20)

Replace v by v + y in (2.19), to get

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M54">View MathML</a>

(2.21)

Replacing u by x in (2.21) and using (2.18) we obtain Φn(x,v)[τn(x),τn(y)] = 0 for all vU. This yields that

<a onClick="popup('http://www.springerplus.com/content/1/1/31/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.springerplus.com/content/1/1/31/mathml/M55">View MathML</a>

(2.22)

Combining (2.20), (2.21) and (2.22) we find that Φn(u,v)[τn(x),τn(y)] = 0 i.e., τn(Φn(u,v))[x,y] = 0. Hence, we conclude that Φn(u,v) = 0 for all u,vU.This completes the proof of our theorem. □

Some special cases of the above theorem are already known and are of great interest.

Corollary 2.3. ((Ashraf et al. 2004), Theorem 2.3) Let R be a 2 torsion free prime ring and U a square closed Lie ideal of R. Suppose that σ,τ are endomorphisms of R such that τ is one-one, onto. Suppose further that U has a commutator which is not a zero divisor. If F:RR is a generalized Jordan (σ,τ) derivation of U into R then F is a generalized (σ,τ) derivation of U into R.

Corollary 2.4. ((Cortes and Haetinger 2005), Theorem 1.3) Let R be a 2 torsion free ring such that R has a commutator which is not a right divisor and U a square closed Lie ideal of R. Then every generalized Jordan higher derivation of U into R is a generalized higher derivation of U into R.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

Both the authors, viz. MA and AK, with the consultation of each other, carried out this work and drafted the manuscript together. Both the authors read and approved the final manuscript.

Acknowledgements

The authors wish to thank the referees for their useful suggestions.

This research is partially supported by a grant from the Department of Science & Technology, New Delhi (Grant no. SR/S4/MS:556/08)

References

  • Ashraf M, Ali A, Ali S (2004) On Lie ideals and generalized Jordan (θ,ϕ)- derivations in prime rings. Commun Algebra 32:2977-2985 Publisher Full Text OpenURL

  • Ashraf M, Khan A, Haetinger C (2010) On (σ,τ) higher derivations in prime rings. Internat Elect J Algebra 8:65-79 OpenURL

  • Ashraf M, Quadri MA, Rehman N (2001) On Lie ideals and (σ,τ)-Jordan derivations of prime rings. Tamkang J Math 31(4):247-252 OpenURL

  • Bres̆ar M (1991) On the distance of the composition of two derivations to the generalized derivations. Glasgow Math J 33:89-93 Publisher Full Text OpenURL

  • Vukman J, Bres̆ar, M (1988) Jordan derivations on prime rings. Bull Austral Math Soc 37:321-322 Publisher Full Text OpenURL

  • Bres̆ar M, Vukman J (1991) Jordan (θ,ϕ)-derivations. Glasnik Mat 26(46):13-17 OpenURL

  • Cortes W, Haetinger C (2005) On Jordan generalized higher derivations in rings. Turk J Math 29(1):1-11 OpenURL

  • Ferrero M, Haetinger C (2002) Higher derivations and a theorem by Herstein. Questiones Mathematicae 25(2):249-257 Publisher Full Text OpenURL

  • Haetinger C (2000) Derivações de ordem superior em anéis primos e semiprimos.

    Ph.D Thesis, IMUFRGS, UFRGS, Porto Alegre, Brazil

  • Haetinger, C (2002) Higher Derivations on Lie ideals. Tendências em Matemática Aplicada e Computacional 3(1):141-145 PubMed Abstract OpenURL

  • Hasse H, Schimdt FK (1937) Noch eine Begründung ger Theorie der höhr Differential quotenten in einem algebraischen Fünktiosenkörper einer Unbestimten. J Reine Angen Math 177:215-237 OpenURL

  • Herstein IN (2002) Jordan derivations of prime rings. Proc Amer Math Soc 8:1104-1110 OpenURL

  • Herstein, IN (1969) Topics in Ring Theory. Chicago: Univ. Chicago Press. OpenURL