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Abstract

Grating-coupled propagating surface plasmons associated with silver-nanoparticle 2D crystalline sheets exhibit
sensitive plasmonic resonance tuning. Multilayered silver-nanoparticle 2D crystalline sheets are fabricated on gold
or silver grating surfaces by the Langmuir– Blodgett method. We show that the deposition of Ag crystalline
nanosheets on Au or Ag grating surfaces causes a drastic change in propagating surface plasmon resonance (SPR)
both in angle measurements at fixed wavelengths and in fixed incident-angle mode by irradiation of white light.
The dielectric constant of the multilayered silver nanosheet is estimated by a rigorous coupled-wave analysis. We
find that the dielectric constant drastically increases as the number of silver-nanosheet layers increases. The
experimentally obtained SP dispersions of Ag crystalline nanosheets on Au and Ag gratings are compared with the
calculated SP dispersion curves. The drastic change in the surface plasmon resonance caused by the deposition of
Ag-nanoparticle 2D crystalline sheets on metal grating surfaces suggests the potential for applications in highly
sensitive sensors or for plasmonic devices requiring greatly enhanced electric fields.
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Introduction
In recent years, surface plasmon resonance (SPR) phe-
nomena have attracted considerable attention because
of the extremely strong enhancement and confinement
of electric fields near metal surfaces (Knoll 1998). Two
kinds of optical excitations can occur at metal/dielectric
interfaces, propagating surface plasmons and localized
ones, but the geometries of the excitations differ. Propa-
gating surface plasmons are excited at flat metal/dielectric
surfaces under total internal reflection of irradiated
light or at grating metal/dielectric interfaces (Raether
1988), while localized surface plasmons are excited at
metal-nanoparticle/dielectric interfaces (Willets and Van
Duyne 2007). Both excitations are sensitive to material
adsorption events, which change the dielectric constant
on the metal surface.
Recently, tuning of propagating SPR properties has

attracted considerable interest from those seeking to
develop applications for plasmonic devices (Obando and
Booksh 1999; Baba et al. 2003; Baba et al. 2012;). In the
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attenuated total internal reflection format with the
Kretschmann configuration, highly sensitive tuning of
propagating surface plasmons has been obtained by
changing the density of gold nanoparticles deposited
on flat gold surfaces. This high sensitivity occurs
because the dielectric constant of gold nanoparticles is
much larger than that of organic materials (Li et al.
2009). The change in the dielectric constant on thin
gold films was detected by the change in the SPR dip
caused by the adsorption of gold nanoparticles modi-
fied with biomolecules on metal surfaces. This behav-
ior leads to highly sensitive biosensor applications (He
et al. 2000; Ito et al. 2007; Brolo 2012).
Tuning of the localized SPR spectrum associated with

metal nanoparticles is also a key issue in applications of
plasmonic devices (Jensen et al. 2000; Okamoto et al.
2013; Hsiao et al. 2008; Evans et al. 2007; Leroux et al.
2005; Leroux et al. 2008; Leroux et al 2009; Dintinger
et al. 2006; Stockhausen et al. 2010; Yoshida et al. 2012).
The localized SPR of metal nanoparticles is extremely
sensitive to the particle size, composition, and dielectric
constant of surrounding materials. Recently, assemblies
of metal nanoparticles exhibited drastic changes in the
plasmonic absorption wavelength because electromagnetic
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coupling between metal nanoparticles leads to an en-
hancement of the intense electric field, which depends on
the distance between nanoparticles (Tao et al. 2007; Tao
et al. 2008; Chen et al. 2008; Liz-Marzan 2006). This coup-
ling causes two-dimensional nanoparticle nanostructured
arrays to exhibit controllable plasmonic tuning (Courty
2010). Furthermore, using a layer-by-layer assembly tech-
nique, three-dimensional metal-nanoparticle supercrystals
were created; these supercrystals show strong interlayer
and intralayer near-field coupling (Lin et al. 2010).
Metal nanoparticles deposited on metal films exhibit

distinct features on the basis of a dipole–dipole interaction
model (Abe and Kajikawa 2006; Uchino and Kajikawa
2009; Uchimo et al. 2010; Hu et al. 2010). This leads to
a large red shift in the plasmonic absorption spectrum.
In particular, multilayered two-dimensional metal nano-
particles deposited on a metal surface showed extraor-
dinary resonance changes. Furthermore, simultaneous
propagating and localized SPR excitations have recently
been reported (Yu et al. 2006; Live et al. 2009; Ding
et al. 2011). Smith et al. showed that localized plasmon
resonance could be observed when the density of gold
nanoparticles increased on a flat gold surface, while
propagating surface plasmons could also be observed in
different visible wavelength regions by irradiating white
light through a prism (Mock et al. 2012). However, to
our knowledge, there is no report on the study of
grating-coupled SPR properties with a multilayered
two-dimensional metal-nanoparticle sheet.
In this study, we report propagating SPR properties

occurring by the deposition of 2D nanosheet silver-
nanoparticle multilayers on a gold grating or on a silver
grating surface. Figure 1 shows a schematic of the nano-
sheet silver nanoparticles on a metal grating surface.
We found that the dielectric constant drastically in-
creased as the number of nanosheet silver-nanoparticle
layers increased. The experimentally obtained surface
plasmon dispersion curves of Ag crystalline nanosheets
320 nm
Au

Ag na

)

Figure 1 Schematic of the nanosheet silver nanoparticles on a metal
on Au and Ag gratings were compared with calculated
SP dispersion curves to study the increase in the dielec-
tric constant of the multilayered Ag nanosheets.
Experimental section
Silver nanoparticles were synthesized by thermal reduction
of a silver acetate precursor in a melt of myristic acid, as
described earlier (Keum et al. 2008). The resulting Ag
nanoparticles (Ag core size, 4.8 nm± 0.1 nm) capped by
myristates (AgMy) were well-monodispersed. A stable 2D
crystalline sheet (monolayer) spread at an air–water inter-
face was transferred onto gold or silver grating substrates
by the Langmuir–Blodgett (LB) technique. The interparti-
cle distance of the 2D Ag nanosheet was estimated to be
1.9 nm by scanning electron microscope (SEM) imaging.
Details of the fabrication of 2D Ag nanosheets can be
found in previous papers (Toma et al. 2011). A polycar-
bonate blu-ray recordable disc (BD-R, Taiyo Yuden Co.,
Ltd.) was used as the grating substrate (Λ = 320 nm) be-
cause of the low-cost and simple technique (Baba et al.
2011; Kaplan et al. 2009; Singh and Hillier 2006). The BD-
R was cut into pieces, which were then immersed in nitric
acid to remove the dye layer from the grating side. The
cleaned pieces were coated with a layer of gold or silver
(thickness ~150 nm) by vacuum evaporation at a depos-
ition rate of 1.0/sec at 6.7 × 10-4 Pa. (ULVAC, VPC-400).
The grating samples were mounted on a θ-2θ goniometer.
A halogen lamp as the white light source or a HeNe
laser was used for the excitation of SPs. P-polarized
light was collimated by objective lens and irradiated on
the grating samples. The reflected zero-order light was
detected by a spectrometer. SPR excitation experiments
were carried out at a fixed incident angle as a function
of wavelength or at a fixed wavelength as a function of
incident angle. Grating-coupled SPR modeling was per-
formed on G-Solver (Grating Solver Development, Co.)
using rigorous coupled-wave analysis.
 or Ag ca. 150 nm

)
nosheet: 1~3 layers

grating surface.
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Figure 2 Grating-coupled angular SPR reflectivity curves for multilayered AgMy nanosheets on a gold grating film measured at 632.8 nm,
594 nm, and 543 nm.
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Figure 3 Grating-coupled angular SPR reflectivity curves for multilayered AgMy nanosheets on a silver grating film measured at
632.8 nm, 594 nm, and 543 nm.
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Results and discussion
Figure 2 shows grating-coupled angular SPR reflectivity
curves from multilayered Ag nanoparticles (Ag core size,
4.8 nm± 0.1 nm) capped by 2 nm-thick myristates (AgMy)
nanosheets on gold grating films measured at 632.8 nm,
594 nm, and 543 nm. The figure shows that, at each wave-
length, the dip angles of the reflectivity curves shift toward
lower angles as the number of AgMy nanosheet layers in-
creases. For angular SPR properties on silver grating films,
Figure 3 also shows that the dip angle nonlinearly shifts to
lower angles, and for three layers, the shift in the dip angle
is large. The plots of the angles on both gold and silver
gratings in Figure 4(a) clearly show the large shift for three
layers. In theoretical simulations, if the dielectric constant
0 1
30

35

40

45

50

55

60

65

70

75

D
ip

 a
ng

le
 / 

Number

1
2.0

2.4

2.8

3.2

3.6

4.0

4.4

 632.8 nm on Au
 632.8 nm on Ag
 594 nm on Ag
 543 nm on Ag

D
ie

le
ct

ric
 c

on
st

an
t

Number

(b)

(a)

Figure 4 Plots obtained from SPR reflectivity curves on gold and silve
AgMy nanosheet as a function of the number of layers.
is constant, the dip angle would approximately mono-
tonically decrease as the thickness of deposited mate-
rials increases on metal gratings (See Additional file 1:
Figure S1). However, Figure 4(a) shows that the dip
angles decreases nonlinearly with the number of AgMy
nanosheet layers. This indicates that the dielectric con-
stant of the AgMy nanosheet changes as the number of
layers change.
Modeling the SPR dip produced by the nanosheets

confirmed an increase in the dielectric constant with the
number of layers. In calculation, the dielectric constant of
each layer could be adjusted to match the shift because
the thickness of AgMy nanosheets was obtained in pre-
vious work and was assumed to be constant. Figure 4(b)
2 3
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contains plots obtained by rigorous coupled-wave ana-
lysis using G-Solver. The calculations were carried out
using an assumed thickness (9 nm) for each nanosheet
layer, because our previous study showed AgMy nano-
sheet was well formed to be a monolayer (Okamoto
et al. 2013). As Figure 4(b) shows, the dielectric con-
stant at 632.8 nm did indeed increase from ε = 2.56 for
one nanosheet layer to ε = 4.2 for three nanosheet layers
on the gold grating surface. For the silver grating, the
dielectric constant suddenly increased at three AgMy
nanosheet layers. Since the deposited AgMy nanosheets
were exactly the same for each layer, this change in the
dielectric constant is surprisingly large. To our know-
ledge, this is the first report that provides an estimate of
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Figure 5 SPR reflectivity curves from a bare Au grating (top) and from
fixed angles from 20° to 70° as a function of wavelength.
the dielectric constant of a metal-nanoparticle nano-
sheet multilayer. In our previous study, the large in-
crease in the dielectric constant of gold nanoparticles
was attributed to plasmonic interactions between adja-
cent nanoparticles when the nanoparticles were closely
packed (Li et al. 2006). However, because the AgMy
nanosheet is already closely packed on the Ag nanopar-
ticle 2D crystalline sheet (Okamoto et al. 2013; Yoshida
et al. 2012; Toma et al. 2011), the increase in the dielec-
tric constant found in this study mostly due to interac-
tions either between intralayer nanoparticle nanosheets,
or between nanosheets and the metal grating films.
Moreover, the strong interference effect due to the
nanometer optical coatings of the strongly absorbing
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material on metalallic materials, might effect the large
shift (Kats et al. 2013).
In our previous report, a red shift in the LSPR absorp-

tion peak was observed when the AgMy nanosheet was
deposited on flat metal surfaces, while there was no
change in the absorption peak on a glass substrate
(Toma et al. 2011). This behavior might affect the in-
crease in dielectric constant at each wavelength. Another
possibility is interactions between localized surface plas-
mons and propagating surface plasmons. Propagating
surface plasmons on both Au and Ag gratings are clearly
observed for up to three nanosheet layers at 632.8 nm.
However, the dip due to propagating surface plasmons
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Figure 6 SPR reflectivity curves from a bare silver grating (top) and fr
fixed angles from 20° to 70° as a function of wavelength.
becomes broader and the reflectivity is very low not only
at around the SPR dip angle but also in the angle region
higher than the critical angle, especially at 543 nm. This
is especially obvious for three layers on both the Au and
Ag gratings. As the number of layers increases, the local-
ized plasmon peak shifts to longer wavelength (Okamoto
et al. 2013) and becomes closer to the observed wave-
length of propagating SPR, resulting the decrease of the
reflectance at around the wavelength, hence the broad-
ened and lowered reflectance SPR curves might be due
to coexcitation of LSPR and propagating SPR, resulting
in confined energy near the surface in the broad-angle
region.
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To further study the unusual changes in dielectric
constants, we measured SPR excitations at fixed angles
from 20° to 70° as a function of wavelength for bare Au
grating and for three AgMy nanosheet layers on the Au
grating, as shown in Figure 5. In this figure, the sharp
dip moves to longer wavelengths as the incident angle
increases, while the shallow dip shifts to shorter wave-
lengths, especially for three layers of AgMy nanosheets.
Both dips were shifted to longer wavelengths as the
AgMy nanosheets were deposited on the Au grating sur-
face. In the case of Ag grating (Figure 6), only one sharp
dip for each incident angle was observed; this dip also
shifted to higher wavelengths as the dip angle increased
and as AgMy nanosheets were deposited on the Ag sur-
face. To study the effect of LSPR on the metal films, we
measured reflectance curves from one to three AgMy
nanosheet layers on the flat Au at fixed angles of 20°
and 70° as a function of wavelength at p-polarization.
As shown in Figure 7, the reflectance dip at 20° due to
the LSPR absorption shifts to higher wavelength as the
number of AgMy nanosheet increases, while the dip
Figure 7 Reflectance curves from one to three AgMy nanosheet
layers on the flat Au at fixed angles of 20° and 70° as a
function of wavelength at p-polarization.
wavelength at 70° is almost constant. The trend of the
wavelength change on flat Au corresponds well with the
shallow dips in Figure 5, confirming that the origin of
the shallow dips is due to the LSPR absorption. This in-
dicates that the low reflectivity in the range from 450 to
650 nm (in Figure 5) should be due to the LSPR and
propagating surface plasmon co-excitations. The broad-
ened reflectivity curves of 3 AgMy nanosheets on Ag at
20° in Figure 6 should also be due to the effect of the
LSPR besides the propagating SPR excitation. As seen
in supporting informations SI2-SI5, the wavelength shift
was observed only on the metal film, and the angle de-
pendence of the dip wavelength was observed only in
the case of the irradiation of p-pol. light on the metal
film. There is a possibility that the shift of LSPR absorp-
tion affects the dip wavelength in the reflection mode.12

It is interesting to note that the dip clearly shows angle
dependence for three AgMy layers, indicating some
interaction between the AgMy nanosheet and the Au
metal surface. Recently, Kats et al reported the wave-
length shift and angle dependence by the deposition of
highly absorbing nanomaterials on Au surface at p-pol.
light irradiation, which was originated from Fabry-Perot-
type interference (Kats et al. 2013). In our case, because
the metal nanoparticles has high dielectric constants with
strong absorption due to LSPR, the similar wavelength
shift and angle dependence might be generated by the
deposition of multilayered AgMy nanosheet.
For each dip angle and wavelength in Figures 5 and 6,

we plotted the corresponding SP dispersion (symbols) as
shown in Figure 8. Calculated SP dispersion relations on
the silver and gold gratings for m = 0(+) and m = +1(−)
modes are also shown (solid curves). The SP dispersion
can be obtained from the SP excitation condition de-
fined as

ksp ¼ kpx þ G ¼ 2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffi
εm ωð Þ

p
sinθ þ 2π

Λ
m: ð1Þ

Here, Λ is the diffraction grating pitch, λ is the wave-
length, m is the diffraction order, and εm(ω) is the
wavelength-dependent dielectric constant of silver given
by the classical Drude’s free-electron model. As shown
in Figure 8, the wavelength, which corresponds directly
to angular frequency, becomes shorter as the wavenum-
ber of the SP dispersion branch for the m = 1(−) mode
decreases. Here, the wavenumber of the SP dispersion
branch corresponds directly to the incident angle. The
SP dispersion of the Au grating almost corresponds to
the m = 1(−) mode, although some discontinuities and
small errors are observed from the calculated curves.
The plots clearly indicate that the SP dispersion for two
and three AgMy layers show a large shift from the bare
Au grating SP dispersion. Conversely, the plot for the
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shallow dips did not correspond to any theoretical SP
dispersion curve. This indicates that the origin of the
shallow dip in Figure 4 is not responsible for the propagat-
ing SP excitation on the Au grating surface. This is reason-
able that the dips originated from LSPR absorption were
observed on flat Au as discussed in Figure 7. For the Ag
grating surface, the experimental SP dispersion data
correspond to the theoretical SP dispersion curve for
the m = 1(−) mode. Similarly, a large shift in the SP dis-
persion plot was observed for three AgMy nanosheet
layers, indicating plasmonic interactions.

Conclusions
We studied the SP excitation properties of Ag crystalline
nanosheets on Au and Ag grating surfaces, and found a
drastic change in SP excitation from angular measurements
at fixed wavelength and from measurements at fixed inci-
dent angle under irradiation with white light. The SPR dips
were drastically shifted when Ag crystalline nanosheets
were deposited on the grating surfaces. The experimentally
obtained SP dispersion data of the Ag crystalline nano-
sheets on Au and Ag gratings were compared to calculated
SP dispersion curves. A large shift in the wavelength or dip
angle by the deposition of Ag nanoparticle 2D crystalline
sheets on a metal grating surface based on the drastic
change in the surface plasmon resonance suggests the po-
tential for applications in highly sensitive sensors or for
plasmonic devices requiring greatly enhanced electric fields.

Additional file

Additional file 1: Supporting Information.

http://www.biomedcentral.com/content/supplementary/2193-1801-3-284-S1.pdf


Baba et al. SpringerPlus 2014, 3:284 Page 10 of 10
http://www.springerplus.com/content/3/1/284
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AB and KT designed and analyzed the entire experiment and prepared the
manuscript. KI, AY and DT assisted the sample preparation and analysis of
the experiment. All authors read and approved the final manuscript.

Acknowledgements
We thank K. Okamoto for fruitful discussion, and S. Asaki and H. Ninsonti for
experimental assistance. This work was supported by the funding program
for next generation world-leading researchers (NEXT program) in JSPS. This
work was performed under the Cooperative Research Program of "Network
Joint Research Center for Materials and Devices".

Received: 27 March 2014 Accepted: 8 May 2014
Published: 5 June 2014

References
Abe S, Kajikawa K (2006) Linear and nonlinear optical properties of gold

nanospheres immobilized on a metallic surface. Phys Rev B 74:035416
Baba A, Lübben J, Tamada K, Knoll W (2003) Optical properties of ultrathin poly

(3,4-ethylenedioxythiophene) films at several doping levels studied by in situ
electrochemical surface plasmon resonance spectroscopy. Langmuir
19:9058–9064

Baba A, Aoki N, Shinbo K, Kato K, Kaneko F (2011) Grating-coupled surface
plasmon enhanced short-circuit current in organic thin-film photovoltaic
cells. ACS Appl Mater Interfaces 3:2080–2084

Baba A, Tada K, Janmanee R, Sriwichai S, Shinbo K, Kato K, Kaneko F,
Phanichphant S (2012) Controlling surface plasmon optical transmission with
an electrochemical switch using conducting polymer thin films. Adv Funct
Mater 22:4383–4388

Brolo AG (2012) Plasmonics for future biosensors. Nat Photon 6:709–713
Chen CF, Tzeng SD, Chen HY, Lin KJ, Gwo S (2008) Tunable plasmonic response

from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of
near-field coupling. J Am Chem Soc 130:824–826

Courty A (2010) Silver nanocrystals: self-organization and collective properties.
J Phys Chem C 114:3719–3731

Ding P, Liang E, Cai G, Hu W, Fan C, Xue Q (2011) Dual-band perfect absorption
and field enhancement by interaction between localized and propagating
surface plasmons in optical metamaterials. J Opt 13:075005

Dintinger J, Klein S, Ebbesen TW (2006) Molecule–surface plasmon interactions in
hole arrays: enhanced absorption, refractive index changes, and all-optical
switching. Adv Mater 18:1267–1270

Evans PR, Wurtz GA, Hendren WR, Atkinson R, Dickson W, Zayats AV, Pollard RJ
(2007) Electrically switchable nonreciprocal transmission of plasmonic
nanorods with liquid crystal. Appl Phys Lett 91(1-3):043101

He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD
(2000) Colloidal au-enhanced surface plasmon resonance for ultrasensitive
detection of dna hybridization. J Am Chem Soc 122:9071–9077

Hsiao VKS, Zheng YB, Juluri BK, Huang TJ (2008) Light‐driven plasmonic switches
based on au nanodisk arrays and photoresponsive liquid crystals. Adv Mater
20:3528–3532

Hu M, Ghoshal A, Marquez M, Kik P (2010) Single particle spectroscopy study of
metal-film-induced tuning of silver nanoparticle plasmon resonances. J Phys
Chem C 114:7509–7514

Ito M, Nakamura F, Baba A, Tamada K, Ushijima H, Lau KHA, Manna A, Knoll W (2007)
Enhancement of surface plasmon resonance signals by gold nanoparticles on
high-density DNA microarrays. J Phys Chem C 111:11653–11662

Jensen TR, Malinsky MD, Haynes CL, Van Duybe RP (2000) Nanosphere
lithography: tunable localized surface plasmon resonance spectra of silver
nanoparticles. J Phys Chem B 104:10549–10556

Kaplan B, Guner H, Senlik O, Gurel K, Bayindir M, Dana A (2009) Tuning optical
discs for plasmonic applications. Plasmonics 4:237–243

Kats MA, Blanchard R, Genevet P, Capasso F (2013) Nanometre optical coatings
based on strong interference effects in highly absorbing media. Nat Mater
12:20–24

Keum CD, Ishii N, Michioka K, Wulandari P, Tamada K, Furusawa M, Fukushima HA
(2008) Gram scale synthesis of monodispersed silver nanoparticles capped by
carboxylates and their ligand exchange. J Nonlinear Opt Phys Mater 17:131–142
Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic wave.
Annu Rev Phys Chem 49:569–638

Leroux YR, Lacroix JC, Chane-Ching KI, Fave C, Felidj N, Levi G, Aubard J, Krenn
JR, Hohenau A (2005) Conducting polymer electrochemical switching as an
easy means for designing active plasmonic devices. J Am Chem Soc
127:16022–16023

Leroux Y, Lacroix JC, Fave C, Trippe G, Felidj N, Aubard J, Hohenau A, Krenn JR
(2008) Tunable electrochemical switch of the optical properties of metallic
nanoparticles. ACS Nano 2:728–732

Leroux Y, Lacroix JC, Fave C, Stockhausen V, Felidj N, Grand J, Hohenau A, Krenn
JR (2009) Active plasmonic devices with anisotropic optical response: a step
toward active polarizer. Nano Lett 9:2144–2148

Li X, Tamada K, Baba A, Knoll W, Hara M (2006) Estimation of dielectric function
of biotin-capped gold nanoparticles via signal enhancement on surface
plasmon resonance. J Phys Chem B 110:15755–15762

Li X, Tamada K, Baba A, Hara M (2009) pH-controlled two dimensional gold
nanoparticle aggregates for systematic study of local surface plasmon
coupling j. Nanosci Nanotech 9:408–416

Lin MH, Chen HY, Gwo S (2010) Layer-by-layer assembly of three-dimensional
colloidal supercrystals with tunable plasmonic properties j. Am Chem Soc
132:11259–11263

Live LS, Murray-Methot MP, Masson JF (2009) Localized and propagating surface
plasmons in gold particles of near-micron size. J Phys Chem C 113:40–44

Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and
assembly of metal nanoparticles. Langmuir 22:32–41

Mock JJ, Hill RT, Tsai YJ, Chilkoti A, Smith DR (2012) Probing dynamically tunable
localized surface plasmon resonances of film-coupled nanoparticles by
evanescent wave excitation. Nano Lett 12:1757–1764

Obando LL, Booksh KS (1999) Tuning dynamic range and sensitivity of
white-light, multimode, fiber-optic surface plasmon resonance sensors. Anal
Chem 71:5116–5122

Okamoto K, Lin B, Imazu K, Yoshida A, Toma K, Toma M, Tamada K (2013) Tuning
colors of silver nanoparticle sheets by multilayered crystalline structures on
metal substrates. Plasmonics 8:581–590

Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on
Gratings. Springer, Berlin, Germany

Singh BK, Hillier AC (2006) Surface plasmon resonance imaging of biomolecular
interactions on a grating-based sensor array. Anal Chem 78:2009–2018

Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj
N, Lacroix JC (2010) Giant plasmon resonance shift using poly(3,4-
ethylenedioxythiophene) electrochemical switching. J Am Chem Soc
132:10224–10226

Tao A, Sinsermsuksakul P, Yang P (2007) Tunable plasmonic lattices of silver
nanocrystals. Nat Nanotech 2:435–440

Tao A, Ceperley DP, Sinsermsuksakul P, Neureuther AR, Yang P (2008) Self-
organized silver nanoparticles for three-dimensional plasmonic crystals. Nano
Lett 8:4033–4038

Toma M, Toma K, Michioka K, Ikezoe Y, Obara D, Okamoto K, Tamada K (2011)
Collective plasmon modes excited on a silver nanoparticle 2D crystalline
sheet. Phys Chem Chem Phys 13:7459–7466

Uchimo Y, Shimojo M, Furuya K, Kajikawa K (2010) Optical response of gold-
nanoparticle-amplified surface plasmon resonance spectroscopy. J Pjys Chem
C 114:4816–4824

Uchino Y, Kajikawa K (2009) Evaluation of gap distance between gold
nanospheres and a gold substrate by absorption spectroscopy. Chem Phys
Lett 478:211–214

Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance
spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

Yoshida A, Imazu K, Li X, Okamoto K, Tamada K (2012) Spectroscopic properties
of multilayered gold nanoparticle 2D sheets. Langmuir 28:17153–17158

Yu F, Ahl S, Caminade AM, Majoral JP, Knoll W (2006) Erlebacher, J.simultaneous
excitation of propagating and localized surface plasmon resonance in
nanoporous gold membranes. Anal Chem 78:7346–7350

doi:10.1186/2193-1801-3-284
Cite this article as: Baba et al.: Surface plasmon resonance properties of
silver nanoparticle 2D sheets on metal gratings. SpringerPlus 2014 3:284.


	Abstract
	Introduction
	Experimental section
	Results and discussion
	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

